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1. Introduction 

The traditional paradigm for the description and understanding of the nature of command and 
control (C2) system (C2S) operations and performance within the U.S. Army is currently under-
going a radical change.  The U.S. Army Field Manual (FM) 6-0 (Army, 2003) defines the C2S as 
“the arrangement of personnel, information management, procedures, and equipment and facilities 
essential for the commander to conduct operations.”  Tactical battlefield C2 is an extremely com-
plicated action to orchestrate and conduct in an effective manner in its own right.  However, with 
the introduction of new information systems such as the Army Battle Command System (ABCS) 
(Army, 2002), sophisticated new weapons now exist with unprecedented capabilities for lethality 
and requirements for battlefield integration.  As they are contributing to a total reorganization of 
force structures into the new modularity concept, the need for effective understanding of how this 
system can work effectively as a system entity increases exponentially.  The fact is that the com-
plexity of the modern C2S has surpassed the ability for an intuitive understanding of how indivi-
dual components or subsystems can improve or degrade the operation of the overall system.  This 
situation poses the question of how to further develop and improve the performance of the C2S 
without making changes that might actually degrade its effectiveness.  From this it becomes 
apparent that some systematic approach is needed to predict and evaluate the effects that changes, 
additions, and improvements in this system will have on its overall ability to conduct battle space 
management.  

1.1 The Command and Control System’s Demands for Decision Making 

Previous research on this topic (Middlebrooks, 2003; Middlebrooks et al., 1999a; Wojciechowski, 
Plott, & Kilduff, 2005) has developed a paradigm for the systematic evaluation of the C2S from 
the system level viewpoint.  A basic premise of this approach is that all observable characteristics 
of live tactical operations centers (TOCs) in the field can be used in the development of quantita-
tive predictive models of various system components for use in a simulation of the complete C2S.  
Some of these characteristics include such things as the quantity and quality of communications 
messages through the TOC from various digital systems, quality and timeliness of intelligence 
information about the enemy, numbers and expertise levels of team members present in the TOC 
at any given time, individual and group interactions, physical setting of the TOC, and environ-
mental conditions, to name a few.  However, a striking limitation of this approach is in its inability 
to simulate and predict cognitive performance of individuals and teams in areas such as situation 
awareness, knowledge elicitation, error generation, individual versus team performance, and 
decision making.  An ability to predict the optimal decision required for success can be extremely 
useful as a performance measure for use in describing the overall effectiveness of the system. 
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1.2 The Model of Optimal Decision Making 

This research integrates basic research in decision making that is being conducted at the 
Psychology Department of the University of Texas with applied research in unit of action (UA) 
TOC operations being conducted at the Fort Hood Field Element of the U.S. Army Research 
Laboratory’s (ARL’s) Human Research and Engineering Directorate.  Initial work on this topic 
(Middlebrooks & Stankiewicz, 2005) was supported by a grant from the Congressionally funded 
University XXI program in a partnership between the faculty and staff of The University of Texas 
at Austin through the Institute for Advanced Technology and ARL.  It is the goal of this research 
to develop predictive simulations of the C2S UA performance that can be used in the evaluations 
of changes in the system or the addition or modification of system subcomponents.  For example, 
what might the effect be on the overall ability of the UA TOC to conduct battle space management 
from the addition of a new intelligence system that allows information about the enemy to have a 
maximum age of 1 hour before it becomes obsolete versus a maximum age of 4 hours?  One 
intuitive conclusion that could be deduced from this new capability is that it would significantly 
increase the commander’s understanding of the enemy situation because the information is always 
more current than before.  However, this intense stream of information might cause the com-
mander to become more focused on the instantaneous situation on the battlefield and lose situation 
awareness of longer term developments with a resulting degradation in the ability to make 
effective decisions about how to react to the threat.  The effective ability of predictive simulations 
of these types of environments is based on how well they account for the myriad of variables 
stemming from physical activities and the human’s cognitive ability to react to those variables.  
This current research is a first step in allowing simulations of system performance to account for 
limitations in human cognitive performance abilities. 
 

2. Method 

The methodology used in the operation of this model involves two components.  The first is 
defined as the “belief vector” (BV).  This represents the current knowledge that the operator has 
about the system.  Using this knowledge, the operator decides what to do next or what action to 
take in the pursuit of the mission goal.  This model can be generalized to many different decision-
oriented situations where the operator is confronted with a goal-directed task.  In the pursuit of this 
task, the operator may decide to seek information about the condition of the current situation, s/he 
may decide to take some action to achieve the goal, and at some point, s/he will decide that s/he 
has achieved the goal, thus terminating the decision mission sequence.  An example of this 
scenario is provided in the hospital emergency room where a doctor is faced with the mission goal 
of successfully treating a sick patient.  The doctor may administer a medication (take an action) or 
may perform a medical test (seek information) to attempt to identify the patient’s condition.  A 
complete series of medications and tests may be performed before the doctor achieves the belief 
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that the patient has been cured.  If the doctor terminates the sequence before the patient is cured, 
the patient may die.  If the doctor prolongs the sequence beyond the point when the patient is 
cured, a substantial unjustified cost is the result.  This medical sequence is an illustration of 
gathering information and taking actions until a belief is achieved that the goal has been reached.  
Another example is provided in the military context where a ground force commander is given an 
order to seek, find, and destroy an enemy that is at an unknown location.  The commander may 
seek information (e.g., by flying an unmanned aerial vehicle [UAV] reconnaissance mission) or 
s/he may take a direct action to destroy the enemy by firing artillery at a suspected location 
occupied by the enemy.  An entire sequence of UAV and artillery missions may be performed in 
some goal-directed order until the commander believes that the enemy has been destroyed.  At this 
point, the commander decides that the mission is complete because the enemy is believed to be 
destroyed and decides to terminate the action.  This process is modeled through the use of the 
Markov decision process analysis to determine the belief vector and the use of conditional proba-
bility logic to determine the next action to take, based on an evaluation of the current BV. 

2.1 Determination of the Belief Vector 

It is important to recognize that most decisions that are made are not “one off” decisions in which 
the decision is made and then the rewards reaped or the punishment endured.  Instead, most 
decisions that are made have future ramifications and affect the options and decisions that are 
available later.  One challenge faced by any decision maker is the uncertainty that s/he has about 
the true state of the system.  In most circumstances, the true state of the system is unknown or 
hidden.  That is, it cannot be directly observed.  For example, in military decisions, often there is 
uncertainty about an enemy’s position, strength, and morale.  Given that the true state is hidden, 
there are things that can be done to reduce the decision maker’s uncertainty about these states.  For 
example, the decision maker may try to determine the enemy’s position by sending reconnaissance 
to a location where the enemy is believed to be located.  When the reconnaissance returns with 
either an “enemy sighted” or “enemy not sighted” report, decision makers must update their belief 
about the location of the enemy.  

If the observations and actions were all deterministic, revising a belief would be relatively simple.  
However, in almost all conditions, the observations and actions are probabilistic.  That is, the 
probability of getting an observation, given the true state of the environment, is not necessarily  
0.0 or 1.0, or in the example given, there is a certain non-zero probability that the reconnaissance 
mission was sent to the correct location and will miss the enemy and send a report of “enemy not 
sighted”.  Furthermore, there may be a non-zero probability that the reconnaissance mission falsely 
sent a report of “enemy sighted” (or false alarmed) when the enemy was not actually at the 
location.  

Given that the observation and actions are probabilistic, revising a belief, given an observation and 
an action, can become cognitively difficult.  Furthermore, evaluating the added benefit of a specific 
piece of equipment that changes these probabilities can also become difficult.  This research focuses 
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on a task that is commonly faced by decision makers in the military, namely, the seek-and-destroy 
task.  In this task, the decision maker is trying to localize and destroy an enemy within a specific 
region.  At the decision maker’s disposal are actions that allow information to be gained about the 
true state of the system (i.e., the location of the enemy) in addition to changing the state of the 
system (e.g., moving the enemy from a specific location to the state of destroyed).  The former 
actions are reconnaissance actions and the latter are artillery actions.  The outcomes of these actions 
are probabilistic.  That is, reconnaissance actions will not always detect the enemy when a sensor is 
sent to the enemy’s location.  Furthermore, the reconnaissance may also falsely report that the 
enemy is seen at a location in which the enemy is not located.  In addition, the artillery will not 
always kill the enemy when striking it, which is characterized as moving the enemy from being 
alive at a certain location to the “destroyed” state.  

2.1.1 The Optimal Observer 

To best evaluate performance in a task that leads to uncertainty and probabilistic actions, it is 
useful to define the optimal performance within the task. The optimal performance can be calcu-
lated with Bayesian statistics.  However, because of the nature of the current type of task, simple 
Bayesian statistics are insufficient.  That is, with simple Bayesian statistics, the likelihood of the 
true state of the system can be optimally estimated.  However, this likelihood does not indicate 
what action should be selected.  In order to select action, not only must the current state be calcu-
lated, given the previous actions and observations, but the optimal action to be performed in a 
given belief state must also be calculated.  This is done to verify whether a belief state has a 
particular probability distribution across all the possible states in the environment. 

A variation of classical Bayesian statistics that may well add some more predictive power for 
sequential decision making during uncertainty is the Partially Observable Markov Decision 
Processes (POMDP) (Cassandra, 1998; Cassandra, Kaelbling, & Kurien, 1996; Cassandra, 
Kaelbling, & Littman, 1994; Kaelbling, Littman, & Cassandra, 1998; Legge, Klitz, & Tjan, 1997).  
By defining the State Space, Observation Vector, Transition Matrix, and the Reward Structure, we 
can compute the expected reward for a particular action.  In the following sections, a description of 
these actions is provided.  In addition, a description of how to optimally update an individual’s 
belief (Belief Updating), given these definitions, is provided. 

An ideal observer model provides optimal performance, given the information available in the 
task.  Typically, ideal observers are not proposed as models of human cognition.  Instead, the ideal 
observer provides a benchmark by which to compare human performance.  More specifically, 
these models illustrate what optimal performance should look like.  When human performance 
matches that of the ideal observer model, it can be concluded that the human is effectively 
processing all of the information in the task.  When the human under-performs the ideal observer, 
specific discrepancies between the human data and the ideal data may identify the constraints 
imposed by the human information-processing system. 
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Ideal observer analysis is not new to this research and has been previously used to help us 
understand perceptual functions from the quantum limits of light detection (Hecht, Shlaer, & 
Pirenne, 1942) to many forms of visual pattern detection and discrimination (Geisler, 1989) to 
reading Legge, Hooven, Klitz, Mansfield, & Tjan, 2002; Legge et al., 1997), object recognition 
(Liu, Knill, & Kersten, 1995; Tjan, Braje, Legge, & Kersten, 1995; Tjan & Legge, 1998), eye 
movements Najemnik & Geisler, 2005), and in reaching tasks (Trommershäuser, Gepshtein, 
Maloney, Landy, & Banks, 2005).  

2.1.2 Defining the State Space1 

In all problems that are solved with a POMDP architecture, there is a set of possible states that 
defines the state space.  In a POMDP problem, the true state (StateTrue) is not directly observable 
(i.e., it is hidden).  For the work in this project, the hidden state is defined as the enemy’s current 
position within a two-dimensional grid.  This grid of location state spaces is supplanted by an 
additional “destroyed” state that the enemy could transition into following an action to destroy it 
such as an artillery strike at its current position.  Thus, the dimensions of the grid can be charac-
terized as 
 (X x Y) + z, where both X and Y > 1 and z = 1. 

In this case, X is the number of locations of the location grid in the X dimension, Y is the number 
of locations of the location grid in the Y dimension, and Z is the dead state which is always equal 
to 1.  With this nomenclature, a 5x5 location grid state space yields a 26-state space.  A 4x4 
location state grid gives a 17-state space, a 3x3 location state gives a 10-state space, a 2x2 location 
state gives a 5-state space, and so on.  These different state space dimensions are illustrated in 
figures 1 through 3.   

2.1.3 Defining the Belief Vector 

Although the true state is hidden, the operator typically employs actions and observations that 
provide information about the true state of the problem.  In a 26-state space as shown in figure 1, 
the operator can fire artillery at a specific position or conduct reconnaissance at a particular 
location within the environment (i.e., one of the 25 location states).  In this model, a reconnais-
sance action provides two possible observations:  “Enemy Sighted” or “Enemy Not Sighted”.   
An artillery strike is defined to only provide an observation of “No Information,” meaning that 
although the artillery strike was conducted, no information is provided about the resulting con-
dition of the enemy resulting from it because only a reconnaissance mission can observe the 
condition of the enemy.  This replicates the fact that the artillery firing unit does not see the effects 
of its fires because it is an indirect firing unit and is not able to see where the artillery rounds fall.  

                                                 
1Note that the state space being described for this model presentation represents a very primitive enemy state 

space; only one enemy exists in this state space and the enemy can transition only to the dead state or stay where it 
is.  Clearly, a state space of a likely enemy in a current real-world battle space will have multiple target types (and 
number) as well as associated probabilities of transitioning to the dead state.  Probabilities will depend on the type of 
target as well as the method of engagement. 
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It must rely on forward observer (FO) assets to report what is termed “battle damage assessment” 
(BDA) in military jargon.  An illustration of a reconnaissance asset might be an FO on the ground 
or a UAV that provides the BDA. 

 

Figure 1.  5x5 location state space. 

 

 

Figure 2.  2x2 location state space. 
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Figure 3.  2x1 location state space. 

This model assumes that the observer has a belief probability between 0% and 100% that the 
enemy exists in one of the states within the total state space at any given period in time.  It is noted 
that residing in one of the location states is mutually exclusive from residing in the destroyed state.  
That is, if the enemy is “alive” in one of the location states, it cannot be “dead” in the destroyed 
state and vice versa.  The destroyed state is considered to be an “absorbing state” in that once the 
enemy transitions from being alive in a location state to being dead in the destroyed state, it cannot 
return to a live location state.  The set of the belief probabilities for all the states in the state space 
is termed the BV.  For the simple three-state space example in figure 3, the BV could be repre-
sented as 
 [BLocation 1, BLocation 2, BDestroyed] 

For this case, assume that the enemy is alive with an equal probability of residing in one of the 
location states.  Thus, the BV becomes 

 [0.5, 0.5, 0.0]. 

2.1.4 Defining the Transition Matrix 

In this seek-and-destroy problem, the observer (in this case, the military commander) has a number 
of possible actions available.  For actions in a 5x5 location grid state space, there are 25 possible 
reconnaissance actions (one for each of the 25 locations in the environment), 25 possible artillery 
actions (again, one for each of the 25 locations within the environment), and the action to declare 
“mission complete” when it is believed that the enemy has been destroyed, making a total of 51 
possible actions.  The transition matrix defines the probability of the resulting state, given that the 
observer executes a particular action in a specified state (i.e., p(s'|s,a)) where s’ is the resulting 
state, s is the existing state the observer chooses to act on (by reconnaissance or artillery), and a is 
the action taken.  In the static form of the seek-and-destroy problem (i.e., where the enemy is not 
moving), there is only one state transition that can occur for any of the possible actions.  

When the commander fires artillery to where the enemy is located, the enemy may be killed with a 
certain probability, which will cause it to transition into the “destroyed” state.  Sample probability 
estimations for use in this discussion are shown in tables 1 through 3.  These values are estimates 
only and are not to be construed as factual.  The probabilities used in actual analyses depend on the 
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scenario conditions at the time of the actual action sequence and are left as model input parameters 
to be employed during the course of simulation studies that use this model. 

Table 1.  The set of actions and their observations for the current seek and destroy task. 

Action Observation Condition Probability 
Recon Enemy Sighted Enemy Present 0.75 
Recon Enemy Not Sighted Enemy Present 0.25 
Recon Enemy Sighted Enemy Not Present 0.2 
Recon Enemy Not Sighted Enemy Not Present 0.8 

The observations for the reconnaissance action depend on whether the enemy is actually within the viewing region of the 
reconnaissance. Thus, the two possible states are “enemy present” and “enemy not present”. 

 

Table 2.  Probabilities for observation from artillery strike. 

Action Observation Condition Probability 
Strike NoInfo Enemy Present 1.0 
Strike NoInfo Enemy Not Present 1.0 

 

Table 3.  Probabilities for killing the enemy from artillery strike. 

Action Result Condition Probability of Dead 
Strike Probability of Enemy being killed. Enemy Present 0.75 
Strike Probability of Enemy not being killed. Enemy Present 0.25 
Strike Probability of Enemy being killed. Enemy Not Present 0.0 

 

2.1.5 Updating the Belief Vector (BV) 

Given an initial probability distribution over the state space, the observation matrix, and the 
transition matrix, hypotheses can be generated about the current state of the problem after an action 
and the returned observation.  The general form of Bayes’ rule (Trueman, 1977; Walpole, Myers, & 
Myers, 1998; Wine, 1964), as shown in equation 1, is used as a basis to develop this relationship. 

( ) ( )
( )

( ) ( )
( ) ( )

r rr
r

i i ii=l,k i=l,k

P B P A BP B A
P B A

P B A P B P A B
∩

= =
∩∑ ∑

 for r = 1,2, … k 

Equation 1  – General Form of Bayes’ Rule 
in which 

P - probability 
A - StateA 
B -  StateB 
| - “so that” or “given” 
∈  -  Probability theory - all state spaces  
∩  -  Boolean AND 
∪  -  Boolean OR 



 

9 

2.1.5.1  Bayesian Updating Rule 

Using Bayes’ rule, POMDP expressions are derived to simulate sequential decision making with 
uncertainty.  We compute an updated BV by performing a particular action to account for the 
current condition of the state space, a transition matrix for moving from one state to the next, the 
application of a BV generated by the results of past actions, and an observation vector of past 
information elements obtained from previous observations of the state space.  This Bayesian 
updating rule is expressed as 

( ) ( ) ( )
( )

p o s ,b,a p s b,a
p s b,o,a

p o b,a

′ ′
′ =  

Equation 2  – Bayesian Updating Rule 
in which 

s’ = true state (of the condition being present within the total of all 
states, S), represented as s’ ∈ S 

b = prior belief vector 
o = observation 
a =  action that was generated 

nomenclature.  The term p(s’|b,o,a), is read as 
  The probability of s” being true, “so that” or “given” the Boolean conditions of 

“b” AND “o” AND “a”. 

Equation 2 specifies how the ideal observer would update the belief that s′ is the true state, given 
the prior belief (b), the observation (o), and the action that was generated (a). 

2.1.5.2  Update the Belief Vector for First Action:  Perform Recon1 at State1 

To illustrate the process of belief updating, the simple 2x1 location state space of figure 3 will be 
used.  Here, the enemy will be associated with one of three states:  State1, State2, or StateDead.  For 
this case, assume that the enemy is alive with an equal probability of residing in one of the location 
states.  Thus, the BV becomes 

[0.5, 0.5, 0.0] 

meaning that there is a 50% probability of the enemy being believed to be in State1, a 50% 
probability of the enemy being believed to be in State2, and a 0% probability of the enemy being 
believed to be in StateDead.  Assume that the enemy actually is located in State1 and that the 
observer decides to do a reconnaissance of State1 and receives an “enemy sighted” observation.  
The first task is to determine what the observer’s belief is resulting from this action for the enemy 
being located in State1, State2, and StateDead. 

With equation 2, the belief likelihood that the enemy is in State1 is computed.  That is, the desire is 
to compute the belief probability that the enemy is in State1, given the current BV, the current 
observation, and the current action, or p(State1| [0.5, 0.5, 0.0], “EnemySighted”,Recon1). 
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Computing the separate components of equation 2, first, compute p(o|s’,b,a) or p(“Enemy 
Sighted”|State1, [0.5, 0.5, 0.0],Recon1).  To do this, the likelihood of obtaining an observation of 
“Enemy Sighted” if State1 were the true state is needed.  From table 1, the likelihood of correctly 
identifying the enemy as 0.75 is selected. 

Next, compute p(s’|b,a) or the likelihood of the true state being State1, given the previous belief 
and the action of Recon1.  Because there is no transition possible to StateDead from a recon mission, 
these remain at the previous probabilities of 0.5.  

Finally, compute p(o|b,a) the likelihood of receiving the observation “EnemySighted” when recon-
naissance is made at State1 or p(‘EnemySighted’|[0.5,0.5, 0],Recon1). 

These calculations are 

p (o|s’,b,a) , for State1 = p(‘Enemy Sighted’ | True State Belief, [0.5, 0.5, 0.0], Recon1) 
  = Probability of Enemy sighted, given belief that enemy was at State1  
  and Recon1 was performed at State1 =  
  = 0.75,  
   from table 1 

p(s’|b,a) , for State1 = p( State1 is true state | ([0.5, 0.5, 0.0], Recon1))   
  = Probability of State1 being the true state, given belief that State1  
  is true state and Recon1 showed enemy present in State1 = s’ =  
  = 0.5,  
   from assumption of equal probability that the enemy has an  
   initial probability of being at one of the two location states. 

p(o|b,a) , for Stat1 = p(‘Enemy Sighted’ | ([0.5, 0.5, 0.0], Recon1))       
   =  ( Probability of Enemy in State1 x Probability of Enemy Sighted  
    When Present) + ( Probability of Enemy in State2 x Probability of  
    Enemy Sighted When Not Present) + (Probability of Enemy Being  
    Dead x Probability of Enemy Sighted When Not Present) 
 = 0.5x0.75 + 0.5x0.2 + 0.0x0.2 = .375 + 0.1 = 0.475 

Thus,  p(State1 | [0.5, 0.5, 0.0], “EnemySighted,” Recon1)  =  

p(s’|b,o,a)  = p (o|s’,b,a) p(s’|b,a) = 0.75 x 0.5 = 0.7895 
  p(o|b,a) 0.475 

Likewise,   p(State2 | [0.5, 0.5, 0.0], “EnemySighted,” Recon1)  =   
= 0.2 x 0.5 = 0.2105 

 0.475 

and p(StateDead | [0.5, 0.5, 0.0], “EnemySighted,” Recon1) =  
   0.2 x 0.0 =  0.0 
   0.475 
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Thus, if the first action is to observe, i.e., perform a UAV reconnaissance mission, at State1, the 
new belief vector would be 

 [0.7895, 0.2105, 0.0]. 

The interpretation of this BV is that the enemy has a 0.7895 probability of being believed to be at 
State1 (present in Cell1), a 0.2105 probability of being believed to be at State2 (present in Cell2), 
and a 0.0000 probability of being believed to be at State3 (dead).  Since these probabilities must 
account for the total belief state of the operator, they must therefore sum to 1.0.  Performing this 
check sum, 

CS = 0.7895 + 0.2105 + 0.0000 = 1.0000; therefore, Checksum verification passed. 

2.1.5.3  Update the Belief Vector for Second Action:  Perform Strike1 at State1 

Now assume that the second action is to conduct an artillery strike at State1 which is represented as 
Strike1.  In order to update the BV with the belief that the enemy is in State1 as a result of this new 
action, determine the probability that the enemy is at State1, given the BV from the first action 
(Recon1), [0.7895, 0.2105, 0.0], and the new action, Strike1, recognizing that the only observation 
from an artillery strike is that the strike was fired which provides the observation “NoInfo”.  Thus, 
the new probability 

 p(State1|[0.7895, 0.2105, 0.0], “NoInfo,” Strike1) 

is computed.  Calculating the components for the updated BV component for State1 from equation 2, 

p (o|s’,b,a)  = p (‘NoInfo’ |  True State Belief, [0.7895, 0.2105, 0.0], Strike1) =  
  = Probability of ‘NoInfo’ given current BV and Strike1 was performed  
   at State1 =  
  = 1.0,   
   because an artillery strike will always return a report of “NoInfo”  
   simply meaning that the artillery strike was fired with no other  
   information provided. 

p(s’|b,a)   = p( State1 | [0.7895, 0.2105, 0.0], Strike1) 
= Probability of “Enemy Not Dead” being the true state, given the 

current BV and the action of Strike1 being fired.   
From table 3, the probability of the enemy being transitioned to dead if 

artillery is fired at the location containing the enemy, or in this 
case, Strike1 being to State1 is = 0.75. 

Conversely, if the artillery strike, Strike1, into State1 does not kill the 
enemy with the enemy remaining in a state of “Enemy Not Dead,” 
from table 3 the probability becomes (because of the three states in 
the state space which are State1 (present or not present in cell 1), 
State2 (present or not present in cell 2), and State3 (belief that the 
enemy is dead or not dead), the deduction is that the enemy is 
believed to be alive (i.e., not dead) in State3) = 0.25. 
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Thus, the probability that the enemy’s state will not change or that the 
enemy will remain alive in State1 is equal to 0.25 times the 
probability that the previous Recon1 sighted the enemy in State1, or 
0.7895 from p(State1| [0.5,0.5,0.0], “Enemy Sighted,” Recon1). 

Therefore, p(s’|b,a) , for State1, following Strike1 is 
 p(s’|b,a)  = 0.7895 x 0.25  

 =  0.1974 

p(o|b,a)    = p((‘NoInfo’ | ([0.7895, 0.2105, 0.0], Strike1))   
  = Probability of ‘NoInfo’ given current BV and Strike1 being performed  
   at State1 =  
  = 1.0,  because an artillery strike will always return a report of “NoInfo”  
    simply meaning that the artillery strike was fired with no other  
    information provided. 

Employing equation 2 to determine the BV, 

p(s’|b,o,a)  = p (o|s’,b,a) p(s’|b,a) = 1.0000 x 0.1974 = 0.1974 
  p(o|b,a)  1.0 

Thus,   p(State1   | [0.7895, 0.2105, 0.0], “NoInfo”,Strike1)  =   0.1974 
Likewise,  p(State2  | [0.7895, 0.2105, 0.0], “NoInfo”,Strike1)  =   0.2105 
Likewise,  p(StateDead | [0.7895, 0.2105, 0.0], “NoInfo”,Strike1)  =   0.5921 

Thus, after the second iteration, where the action was to fire artillery strike 1 into Cell1 (State1), 
called Strike1,  

 the BV now becomes =  [0.1974, 0.2105, 0.5921] 

which is interpreted to mean a 0.1974 probability of the enemy being believed to be alive in State1 
(Cell1), a 0.2105 probability of the enemy being believed to be alive in State2 (Cell2), and a 0.5921 
probability of the enemy being believed to be dead or in StateDead.  Performing the check sum 
verification, 

 CS = 0.1974 + 0.2105 + 0.5921 = 1.0000; therefore, Checksum verification passed. 

See appendix A for a complete set of BV sample calculations for all components of the state space 
for a selected set of five action sequences. 

2.2 Determination of the Action Sequence 

The determination of which action to take at each iteration of the model is made in order to create 
the statistical optimal end state effect.  This state is defined as the end state reached by the fewest 
action sequences with the highest optimal reward value possible.  Reward structure is discussed 
later in this report.  Thus, the selection of the action sequence is achieved through a deterministic 
evaluation of the previous Bayesian state space and BV with the use of conditional probability 
logic.  To begin this discussion, the following definitions are made: 
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Δ ≡ (Delta) Declare Threshold; if the Belief Probability of Enemy Destroyed ≥ Δ, then 
Declare; Δ only refers to the DEAD state. 

σ ≡ (Sigma) Shoot Threshold;  if the Belief Probability of Enemy Destroyed ≥ σ, then 
Shoot; otherwise, perform Recon; σ only refers to the LOCATION states. 

Contrast ≡  The probability of the enemy being in one state relative to all other (location) 
states (dead state is therefore excluded from the Contrast determination).  This is a 
calculated value referred to as a Conditional Probability (CP). 

Thus, if the belief probability of the enemy being destroyed ≥ Δ, then the action decision will be  
to declare the mission complete and end it.  However, if Δ ≤ 0.9, then go through Recon versus 
Shoot logic according to the σ threshold.  Note that the Δ threshold only applies to State3, the dead 
state, and the σ threshold only applies to the location states, State1 and State2.  Therefore, the Δ and 
σ thresholds are independent and not directly related.  For the purposes of discussion, the follow-
ing assignments are made.  These are for reference only as were previous assignments in tables 1 
through 3 and are left as input parameters to the model to set its level of tolerance and to reflect the 
scenario conditions in effect at the time of the model invocation. 

Assume the following assignments: 

Δ = 0.9. 
σ = 0.75. 

2.2.1 Conditional Probability Logic 

For the case undergoing investigation, the action decision logic can be viewed as a CP.  The 
probability of the enemy being in one of the two location states (State1 or State2), given that the 
enemy is not destroyed, i.e., not present in State3, can be represented as 

P (S1 | Enemy Not Destroyed) = P(S1 | !S3), where the ! symbol represents Boolean ‘NOT’ 

Employing the form of Bayes’ Theorem (equation 3), this becomes 

P(S1 | !S3) = P(!S3 | S1) P(S1)  
 P(!S3) 

Equation 3 – Conditional Probability Initial Form 

Since the probability of the enemy not being dead if in State1 is equal to 1.0, meaning that the 
enemy is alive, is represented as 

P(!S3 | S1) = 1.0, 

and the probability of the enemy not being dead, P(!S3) is equal to the sum of the probabilities of 
being in one of the location states, or in this case [P(S1) + P(S2)], equation 3 now becomes 

     P(S1 | !S3) = 1.0 x P(S1)   =      P(S1)  
       P(S1) +   P(S2)   P(S1) +   P(S2) 

Equation 4 – Conditional Probability Expression 
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2.2.2 Calculation of Sample Action Sequence Using Conditional Probability 

By evaluating the CP using the σ and Δ thresholds, the model makes the action decisions during 
each iteration of the logic.  After each action, a new BV is calculated to be used in the next action 
decision.  For the sample σ and Δ threshold values of 0.75 and 0.90, the action sequence for the 
first five actions is computed for verification of the computer simulation runs that will be made 
with this model.  These parameter choices provide for an action sequence for the first five actions 
to be 

1) Recon1 to S1. 
2) Strike1 to S1. 
3) Recon2 to S2. 
4) Strike2 to S1. 
5) Recon3 to S2. 

The BV and action values manually calculated for this five-action sequence will be used as test 
parameters to develop a computer simulation modeling this process. 

See appendix B for tables that illustrate the action calculations that determine this sequence. 

2.3 Implementation in C3TRACE 

To implement this model in a computer simulation, the programming environment of command,  
control, and communications: techniques for the reliable assessment of concept execution 
(C3TRACE) (Kilduff, Swoboda, & Barnette, 2005; Plott, 2002; Plott, Quesada, Kilduff, Swoboda,  
& Allender, 2004) is employed.  C3TRACE, developed through funding by ARL’s Human Research 
and Engineering Directorate, is an adaptation of the commercial discrete event programming 
language Micro Saint Sharp2 (Schunk & Plott, 2004).  Although the basic Micro Saint Sharp 
programming language allows task-based computer simulations of real-world systems and processes 
to be represented, C3TRACE has embedded data structures that augment Micro Saint Sharp to allow 
for detailed representation of U.S. Army C2 systems. 

The optimal decision-making model described in this report allows existing computer simulations  
of C2 systems configured around task performance analysis (Cassandra et al., 1996; Hancock & 
Meshkati, 1988; Middlebrooks, 2003, 2004; Middlebrooks et al., 1999a, 1999b; Middlebrooks & 
Williges, 2002) to now be structured to incorporate optimal decision making as a performance 
metric with the use of the belief updating model.  The steps in this process resemble the well-known 
observe-orient-decide-act (OODA) model (Belknap, 1996; Boyd, 1982; Morgan, Glickman, Wood-
ward, Blaiwes, & Salas, 1986).  The decision actions in this model consist of gathering information, 
updating the belief about the environment or state space, taking an action to accomplish an objective 
in the state space, and then making a decision whether to continue the mission or terminate it with 
an assessment of mission success or failure.  An example in a military C2 scenario employs a UAV 
to gather the intelligence, artillery to take an action to destroy an enemy somewhere within the state 

                                                 
2Micro Saint Sharp is a trademark of MicroAnalysis and Design, Inc. 
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space, and belief updating to evaluate the situation after each action and then repeat the sequence or 
declare “mission complete”.   

2.3.1 Design of the C3TRACE Simulation 

C3TRACE programs are implemented with discrete event language constructs common to any 
Micro Saint Sharp simulation program.  The top level of a C2 sub-workgroup within a sample 
organization is shown in the example depicted in figure 4.  Here, messages received by the radio 
operator are distributed according to their subject content.  Situation reports (SITREPs) are passed 
to the S3 operations officer, logistics reports are passed to the S4 logistics officer for action, and so 
on.  If, for example, a mission directive such as seek and destroy an enemy is received, it is passed 
to the commander for action.  There are different reactions that might be invoked in response to 
such a directive.  The commander might communicate to the originating authority to clarify infor-
mation, an initial estimate of the situation before taking action might be performed, an updating of 
the situational awareness before taking action might be performed, or the mission might be under-
taken as directed.  In this case, as depicted in the green box in figure 4, what is referred to as the 
decision making during uncertainty (DMDUC) process would be initiated to execute the mission. 

 
Figure 4.  C3TRACE command and control simulation vignette. 

Figure 5 illustrates the optimal decision process that is modeled.  As stated, this process is very 
similar to the OODA model.  This diagram represents an iterative process where the decision maker 
makes an initial estimate of the situation and then begins an iterative process of gathering additional 
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information (flying a UAV mission) or taking an action to destroy the enemy (firing artillery).  
When the commander believes that the enemy has been destroyed, a mission complete decision is 
made and the results of the decision are realized.  If the enemy was destroyed and the decision 
maker made that correct assessment, then a positive reward resulting from a good decision is 
applied to the performance of the overall system.  If the enemy was not destroyed and the decision 
maker believed that it was destroyed, then a negative battlefield outcome is applied to the simula-
tion.  Likewise, if the enemy was destroyed but the decision maker believed it was not, then the 
results of poor decision making are applied.  This process of iterative action can be generalized to 
similar scenarios where information is gathered (observe), belief updating occurs (orient), decisions 
are made for mission success (Decide), and actions are taken to accomplish the mission (act).  The 
examples of employing a UAV and firing artillery are used here to provide a tangible example of 
how this type of activity might occur.   

Referring to figure 5, the top-level logic for this model can be examined.  After initiating the 
decision sequence and performing an initial estimate of the situation, the commander updates the 
BV, defined as the belief about the current situation regarding the enemy, and then begins an 
iterative process of looking for information or taking an action to accomplish the mission.  When 
this process has reached some level of belief that the mission is accomplished, the commander 
terminates the action and completes the decision process by declaring that the mission is a 
“success” or a “failure”. 

If the initial desire is to obtain additional information, a UAV is sent to a specified location to try to 
locate the enemy.  The UAV is the information-gathering or BDA tool available to the commander 
to update the BV about the enemy.  If the target is already dead from previous artillery action, then 
there is no correct location for the enemy because it does not exist.  If the enemy is alive and the 
UAV is sent to the correct location, then it has a probability, according to table 1, of detecting  
or not detecting the enemy according to the accuracy of the UAV.  From this it will correctly or 
incorrectly report that the enemy was found.  Likewise, if it is sent to a location where the enemy is 
not located or if the enemy is already dead, it may correctly or incorrectly report the enemy sighted, 
again according to table 1.  The values in table 1 are only sample estimates for use in the develop-
ment of this model and do not represent any actual system currently in existence.  During the actual 
use of this model, these parameters are set to represent the actual detection characteristics of the 
information gathering entity being evaluated.  After the UAV mission is flown, the commander 
evaluates the report from the UAV through the process of updating the BV and using this new 
information, decides what process to invoke next. 
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Figure 5.  Optimal decision making during uncertainty model. 

If the commander decides to fire artillery (which is representative of taking a positive action to do 
something to accomplish the mission), then the probability exists that the right or wrong location 
will be fired upon.  If the artillery fires on the wrong location, then the only outcome will be to 
miss the target.  If the correct location is fired upon, then the artillery will kill or not kill the enemy 
according to the circular area of probability for the type of artillery fired.  Independent of where 
the artillery is fired, the only report that is sent to the commander is that the artillery fired upon the 
location specified or “no information” concerning BDA.  This represents the fact that artillery is an 
indirect fire weapon and the firing unit never actually sees the target.  The forward observer, or in 
this case, the UAV, must report the actual target situation, i.e., to provide the BDA.  The com-
mander must than evaluate the firing data and information from previous UAV reconnaissance 
missions to decide whether to continue the mission or declare the enemy is dead and end the 
mission.   

When the commander believes that the enemy has been destroyed, then mission complete is 
declared.  Then the commander is faced with the rewards of a successful, i.e., good decision 
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sequence where the enemy was killed, meaning that the mission accomplished, or the effects of a 
bad decision where the enemy was not killed, meaning that the mission was not accomplished. 

2.3.2 Belief Updating Logic 

Figure 6 illustrates the input feeding the sequence of evaluating the current situation and updating 
of the BV and the resulting choice for the next action. 

 
Figure 6.  Task diagram for belief updating. 

The code script in the beginning effect of C3TRACE task “Update Belief Vector” of figure 6 
closely follows the BV updating logic described before.  An annotated description of this logic as 
implemented in the C3TRACE computer simulation takes the form 

Definitions: 
BV - Belief Vector 
Variables in Equation 2: 

s’ - True state within the total state space. 
b - Prior belief for that state. 
o - Current observation. 
a - Action that was generated. 
In-State -  Probability of a state being transferred in to.  This is equal to 0 for location states because 

for a static enemy condition a location state can never be transferred in to. 
Out-State - Probability of a state being transferred out from.  This is equal to 0 for the dead state 

because once the enemy is dead it can not be transferred back to alive. 
 Components of Equation 2: 

PoGs’ba - Probability of o Given s’ & b & a. 
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Ps’Gba - Probability of s’ Given b & a. 
PoGba - Probability of o Given b & a. 
Ps’Gboa - Probability of s’ Given b & o & a =  (PoGs’ba * Ps’Gba) / PoGba => Eq. 
2. 

 
If the action generated was to recon, then update the BV from the recon mission: 
 Do for each state: 

 Calculate PoGs’ba from Table 1 lookup. 
 Calculate Ps’Gba from previous belief probability of the enemy in the state occupied. 
 Calculate PoGba from: 
  (Probability of Enemy in State Action To * Table 1 Lookup for that State) +  
  (Probability of Enemy in State Action Not To * Table 1 Lookup for that State) + 
  (Probability of Enemy in State Dead * Table 1 Lookup for condition applicable to State Dead) 
 Calculate Ps’Gboa  from:  (PoGs’ba * Ps’Gba) / PoGba 
 Equate the BV component for that state = Ps’Gboa. 

 End Do 
 
Else if the action generated was to Shoot, then update BV from the shoot mission: 
 Do for each state: 

 Calculate PoGs’ba from Table 2 lookup which will always = 1.0. 
 Calculate Ps’Gba from: 
  [Probability (In-State) x (previous probability for State Struck] +  
  [(1.0- Probability (Out-State) x (previous probability for State Occupied)] 
 Calculate PoGba from Table 2 lookup which will always = 1.0. 
 Calculate Ps’Gboa  from:  (PoGs’ba * Ps’Gba) / PoGba 
 Equate the BV component for that state = Ps’Gboa. 

 End Do 
 
End 

 
See figures 12 through 16 for sample calculations performed to test this logic. 

2.3.3 Action Decision-Making Logic 

The code script in the beginning effect of C3TRACE task “Evaluate Report” of figure 6 closely 
follows the CP logic described previously.  An annotated description of this logic as implemented 
in the C3TRACE computer simulation takes the form 

Definitions: 
CP - Conditional Probability 
Sigma - σ, Shoot Threshold;  if the Belief Probability of Enemy Destroyed ≥ σ, then Shoot, 

otherwise recon.  σ only refers to the LOCATION states. 
Delta - Δ, Declare Threshold; if the Belief Probability of Enemy Destroyed ≥ Δ, then Declare.  Δ 

only refers to the DEAD state. 
 
Variables in Equation 6: 
PS1  - Previous BV component for S1. 
PS2  - Previous BV component for S2. 
Ps1GNs3 -Probability of S1 given NOT S3 = probability of the enemy not being dead 
 - PS1  / ( PS1  + PS2 )     => Eq. 6. 

 Do 
  Calculate CP1 = PS1  / ( PS1  + PS2 ) 
  Calculate CP2 = PS2  / ( PS1  + PS2 ) 
 End Do 
  If ((CP1 & CP2) < σ) then 
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   If (CP1 > CP2) then Recon at S1 
   If (CP1 < CP2) then Recon at S2 
   If (CP1 = CP2) then Recon at Random pick of S1 or S2 
  End If 
  If (CP1 > σ) then SHOOT at S1 
  If (CP2 > σ) then SHOOT at S2 
  If ((CP1 > σ) & (CP2 > σ) ) then SHOOT at Random pick of S1 or S2 
 Calculate new BV 
 If ( (BV component for S3) > Δ) then 
  Declare mission complete 
 Else continue processing and go to next iteration 
 
See tables 8 through 12 for sample calculations performed to test this logic. 
 

3. Discussion and Results 

The simplest version of the POMDP model state space design as shown in figure 3 is used in this 
report to evaluate and demonstrate the logic through the computer simulation in C3TRACE.  
Although the state space that consists of two location states, State1 and State2, and one status state, 
StateDead, can seem trivial and unrelated to any actual human performance condition, even this 
simple arrangement can relate to actual performance.  The seek-and-destroy mission, looking to 
destroy an enemy residing at some unknown location, can be characterized as looking or shooting 
at the enemy at the right or wrong location before declaring that the enemy has been destroyed.  
Thus, a simple form of the state space such as this can form the basis for developing logic that can 
be expanded after verification to much larger location state spaces.  

A means for evaluating the performance of the simulation is to implement a reward structure (RS) 
consisting of an explicit cost for taking different actions.  There would be a certain cost for con-
ducting a reconnaissance and another greater cost for conducting an artillery strike.  There would 
also be a reward if the mission complete declaration is made when the enemy has actually been 
destroyed and a corresponding large cost assessed when mission complete is called when the 
enemy has not been destroyed.  

3.1 Control Parameters 

The Δ and σ control parameters for the BV and CP calculations allow the model to respond to 
settings for aggressiveness by the operator in making decisions to perform reconnaissance or to 
shoot and to reflect the operator’s confidence when a successful mission has occurred.  The σ 
control parameter is used to set the reconnaissance versus shoot threshold criteria for the perform-
ance of the simulation.  Values of σ during analytical runs of the simulations can be varied to 
represent the complexity and decision threshold conditions of the scenario being simulated.  The  
Δ control parameter is used to set the decision threshold criteria for the performance of the 
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simulation.  Values of Δ during analytical runs of the simulations can be varied to represent the 
complexity and decision threshold conditions of the scenario being simulated. 

3.1.1 Sigma Parameter 

The σ control parameter for the BV and CP calculations is used to set the look versus shoot 
threshold criteria for the performance of the simulation.  Values of σ during analytical runs of the 
simulations can be varied to represent the complexity and decision threshold conditions of the 
scenario being simulated. 

3.1.2 Delta Parameter 

The Δ control parameter is used to set the decision threshold criteria for the performance of the 
simulation.  Values of Δ during analytical runs of the simulations can be varied to represent the 
complexity and decision threshold conditions of the scenario being simulated. 

3.2 Action Sequence Assessment 

In order to examine the CP logic associated with actions in this state space, an example of actions 
and the resulting belief vectors are examined.  The assumptions are that the enemy is located in 
State1 and that it is static, i.e., not moving.  Initially, there is an equal probability in the belief of 
the commander that the enemy could be in either of the location states and a belief that the enemy 
is alive.  The initial belief vector is thus [0.5, 0.5, 0.0], meaning a 50% chance of being in location 
State1, a 50% chance of being in location State2, and a 0.0% chance of being in StateDead, i.e., the 
enemy is alive.  

3.2.1 Simulation Action Sequence With Δ = 0.90 and σ = 0.75 

Assume that the control parameter values are initially set to 

σ = 0.75,  i.e., if the Belief Probability of Enemy Destroyed (in regard 
to a location state) ≥ σ, then shoot, otherwise recon. 

Δ = 0.90,  i.e., if the Belief Probability of Enemy Destroyed (in regard 
to the dead state) ≥ Δ, then declare mission complete. 

These assumed values are for example only and are not to be construed to represent any actual 
system. 

Applying these parameters to the BV and CP logic generates the sequence of actions as shown in 
figure 7 and table 4.  Even though the BV component for StateDead exceeds Δ at iteration 5, the 
model run was continued for 20 iterations to illustrate the action sequence asymptotic relationships.  

Activating the Δ control parameter causes the simulation to declare mission complete after iteration 
5 shown in table 9 with a StateDead BV component = 0.9137 which is just over the Δ threshold of 
0.90.  This results in a five-action sequence of recon-shoot-recon-shoot-recon to declare.  If an RS 
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is implemented with a cost of 10 combat power points to recon and 100 combat power points to 
shoot, then the cost of this action sequence would be (3x10) + (2x100) = 230.   

Sequence (w/Enemy @ S1):  Conditional Probability Action Decisions
▲ = 0.9; σ = 0.75
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Figure 7.  First 20 action decisions for Δ = 0.90 and σ = 0.75. 
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Table 4.  First 20 action decisions for Δ = 0.90 and σ = 0.75. 

 

Table 5.  First 20 action decisions for Δ = 0.90 and σ = 0.75. 

 

3.2.2 Simulation Action Sequence With Δ = 0.90 and σ = 0.89 

Applying these parameters to the BV and CP logic generates the sequence of actions as shown in 
figure 8 and table 6.  Even though the BV component for StateDead exceeds Δ at iteration 9, the 
model run was again continued for 20 iterations to illustrate the action sequence asymptotic 
relationships.  
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Sequence (w/Enemy @ S1):  Conditional Probability Action Decisions
▲ = 0.9; σ = 0.89
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Figure 8.  First 20 action decisions for Δ = 0.90 and σ = 0.89. 

Table 6.  First 20 action decisions for Δ = 0.90 and  
σ = 0.89. 
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For this action sequence, the Δ control parameter causes the simulation to declare mission complete 
after iteration 9 shown in table 10 with a StateDead BV component = 0.9079.  This results in a nine-
action sequence of R-R-S-R-S-R-S-R-S to declare.  If we evaluate this sequence with the RS with a 
cost of 10 combat power points to Recon and 100 combat power points to shoot, the cost of the 
action sequence is (5x10) + (4x100) = 450.  

3.2.3 Simulation Action Sequence With Δ = 0.90 and σ = 0.55 

Applying these parameter values to the BV and CP logic generates the sequence of actions as 
shown in figure 9 and table 7.  Even though the BV component for StateDead exceeds Δ at iteration 
5, the model run was also continued for 20 iterations to illustrate the action sequence asymptotic 
relationships. 

Sequence (w/Enemy @ S1):  Conditional Probability Action Decisions
▲ = 0.9; σ = 0.55
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Figure 9.  First 20 action decisions for Δ = 0.90 and σ = 0.55. 
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Table 7.  First 20 action decisions for Δ = 0.90 and σ = 0.55. 

 
 
For this action sequence, the Δ control parameter causes the simulation to declare mission complete 
after iteration 5 shown in table 8 with a StateDead BV component = 0.9231.  This results in a five-
action sequence of R-S-R-S-S to declare.  If we evaluate this sequence with the RS with a cost of 10 
combat power points to Recon and 100 combat power points to shoot, then the cost of the action 
sequence is (2x10) + (3x100) = 320.  

3.3 Reward Structure 

Evaluation of the RS as σ is varied from 0.00 to 1.00 provides an indication of the “cost of doing 
business” based on how aggressive the decision maker is in making action choices.  Figure 10 
shows a profile of the RS over this range with σ in increments of 0.10.  Table 9 shows an expanded 
view of the information in the X axis. 

The intent is to minimize the cost of doing business by performing the least costly sequence of 
actions to achieve the desired belief that the enemy has been destroyed.  In an analytical use of this 
model, tailoring the reconnaissance and strike asset capabilities so that they support an action 
sequence of recon-shoot-recon-shoot-recon to achieve the belief threshold specified would allow 
the system to be tailored for optimal performance along this parameter.  Here, the optimal 
performance occurs over the range of σ ≅ 0.59 to 0.75 with a resulting action cost of 230.  
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Reward Structure by Sigma (σ)
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Figure 10.  Action cost from reward structure varied by σ. 

Table 8.  Sigma, σ, action sequence (R- recon, S- strike, RS- 
reward structure value). 
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Table 9.  Sigma, σ, action sequence (R- recon, S- strike,  
RS- reward structure value). 

 
 

4. Conclusions and Future Work 

The current work has established a model that supports a computer simulation capable of deter-
mining and optimizing optimal decisions during conditions of uncertainty according to evaluations 
of the BV about the current state, action decisions based on CP logic, and optimal performance 
determination through the evaluation of action cost from the RS.  Thus, the C3TRACE simulation 
employing this model can make action decisions based on conditional probability evaluations of the 
belief state representing the current situation.  These action decisions are oriented toward a goal-
directed optimal outcome, and subsequently recognize when the belief has been achieved and the 
outcome reached.  

This report demonstrates the logic of this model through the evaluation of the most simple of state 
spaces.  This sample state space consists of a 2x1 location state matrix and a single status state of 
the dead condition for a total three-state space system.  Future work will expand the location state 
space matrix to 2x2 and 5x5 as shown in figures 1 and 2, along with more sophisticated enemy 
actions for moving versus static operations and goal-directed movement activities. 
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Appendix A.  Belief Vector Calculations for a Selected Five-Action Sequence 

Belief vector calculations for the first five action sequences are presented here. 
 
Parameter Definitions 
 
Tables 1 through 3 are repeated in figure A-1 with parameter identifications to clarify which 
parameter is being used in which calculation.  These parameter identifications are shown 
with a number inside a circle (e.g., ).  These are used to identify original constants and 
the results of each calculation to eliminate confusion as to which parameter constant is being 
applied where.  

 
 
 



 

 

 

Figure A-1.  Initial constants for belief vector calculations. 
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Figure A-2.  Belief vector calculations for first action:  recon1 to state1. 
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Figure A-3.  Belief vector calculations for second action:  strike1 to state1. 
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Figure A-4.  Belief vector calculations for third action:  recon2 to state2. 
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Figure A-5.  Belief vector calculations for fourth action:  strike2 to state2. 
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Figure A-6.  Belief vector calculations for fifth action:  recon3 to state3. 
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Appendix B.  Conditional Probability Calculations for First Five Action 
Sequences 

The following 5 tables illustrate the conditional probability calculations for the sequence RECON1 
to S1, STRIKE1 to S1, RECON2 to S2, STRIKE2 to S1, and RECON3 to S2. 

Action 1:  Make Choice to Perform Recon1 to S1. 

The first action decision to be made by the model is whether to recon or shoot at S1 or S2.  This is 
based on the initial conditions of the state space where the BV has been previously defined as [0.5, 
0.5, 0.0].  It is also noted that the enemy is occupying State1.  Using Equation 6 the numerical 
evaluation of the CP, based on the limitations of the σ and Δ thresholds, is performed resulting in a 
first action to perform a reconnaissance mission to State1.  The results of the action is to generate a 
new BV = [0.7895, 0.2105, 0.0000]. 

Table B-1.  Conditional probability calculations for first action:  Recon1 to S1. 

Initial Belief 
Vector CP Exceed Δ 

Threshold ? 
Exceed σ 

Threshold ? Choice Observation 

 
[0.5,0.5,0.0] 

⎡   S1     ,      S2      ⎤ 
⎣S1+ S2   S1+ S2⎦ 

 
⎡     0.5     ,      0.5       ⎤ 
⎣0.5+ 0.5   0.5+ 0.5⎦ 

 
= [0.5 , 0.5] 

 
∴For Action where 
Dead = 0.0, the 
denominator must 
sum to 1.0, and the 
total contrast must 
sum to 1.0. 

 
NO 

 
Because 
DEAD state 
with a BV 
value = 0.0 is 
less than Δ 
which is 
equal to 0.9. 

 
NO 

 
Because 
neither 
location cell 
has a value > 
0.75 as each 
cell has a 
contrast ratio 
value = 0.5. 

 
As both S1 & S2 
meet recon 
criteria with value 
= 0.5, Select, 
RAN (i) 
Assuming 
Random Pick=1.  
∴ Choice = 
RAND recon (S1), 
or perform a recon 
to S1, or perform 
RECON1. 

 
ENEMY SIGHTED 
From this action of 
RECON1 to S1 
when enemy @ S1.   
 
Generating a Belief 
Vector = 
[0.7895,0.2105,0.0]
. 

 

Action 2:  Make Choice to Perform Strike1 to S1. 

Using the BV from Action #1 of  [0.7895, 0.2105, 0.0000],  the CP is now evaluated to select  
Action #2 to be to perform an artillery strike to S1 generating a new BV = [0.1974, 0.2105, 
0.5921]. 
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Table B-2.  Conditional probability calculations for second action:  Strike1 to S1. 

Previous 
Belief Vector CP Exceed Δ 

Threshold ? 
Exceed σ 

Threshold ? Choice Observation 

 
[0.7895, 

0.2105, 0.0] 

⎡   S1     ,      S2      ⎤ 
⎣S1+ S2   S1+ S2⎦ 

 
⎡        0.7895          ,     

0.2105     ⎤ 
⎣0.7895+0.2105   
0.7895+ 0.2105⎦ 

 
= [0.7895 , 0.2105] 

 
∴For Action where 
Dead Belief = 0.0, 
the denominator 
must sum to 1.0, 
and the total 
contrast must sum 
to 1.0. 

 
NO 

 
Because 
DEAD state 
with a Belief 
Vector value 
= 0.0 is less 
than Δ which 
is equal to 
0.9. 

 
YES 

 
Because cell 
S1 has a 
Contrast 
Ratio value > 
0.75  

 
Because  S1 and 
only S1 meets 
SHOOT criteria, 
Select, Shoot S1 
because  S2 @ 
0.2105 is <  σ at 
0.75.  For future 
cases where there 
might be multiple 
location states 
exceeding σ, set 
up the general 
selection of 
RAND Shoot 
(S1).  In this case 
the choice is to 
SHOOT  at S1. 

 
NO INFO 

 
(From this action of 
STRIKE1 to S1.) 
 
Generating a Belief 
Vector = 
[0.1974, 0.2105, 
0.5921] 

 
 
Action 3:  Make Choice to Perform Recon2 to S2. 
Table B-3.  Conditional probability calculations for third ction:  Recon2 to S2. 

Previous 
Belief Vector CP Exceed Δ 

Threshold ? 
Exceed σ 

Threshold ? Choice Observation 

 
[0.1974, 
0.2105, 
0.5921] 

⎡   S1     ,      S2      ⎤ 
⎣S1+ S2   S1+ S2⎦ 

 
⎡        0.1974          ,     

0.2105     ⎤ 
⎣0.1974+0.2105   
0.1974+ 0.2105⎦ 

 
= [0.4839 , 0.5161] 

 
∴For Action where 
Dead  Belief ≠ 0.0, 
the denominator 
will not sum to 1.0, 
but the total contrast 
must still sum to 
1.0., or 
0.4839 + .5160 = 
1.0 

 
NO 

 
Because 
DEAD state 
with a Belief 
Vector value 
= 0.5921 is 
less than Δ 
which is 
equal to 0.9. 

 
NO 

 
Because 
neither cell 
has a CR 
value > 0.75 
with S1= 
0.4839 and 
with S2= 
0.5160  

 
Because neither S1 
or S2 meets σ 
criteria, select, 
RAN (i) of set of 
cells w/ largest 
contrast value, in 
this case only S2 
@ 0.5160 is in the 
set of cells 
containing the 
largest contrast 
value,  
thus select a recon 
into S2, i.e.,  
perform RECON2 
into S2. 

 
ENEMY NOT 

SIGHTED 
 
From this action of 
RECON2 to S2 
when enemy @ S1. 
 
Generating a Belief 
Vector = 
[0.2308, 0.0769, 
0.6923] 
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Action 4:  Make Choice to Perform Strike2 to S1. 

Using the BV from Action #3 of  [0.2308, 0.0769, 0.6923],  the CP is now evaluated to determine 
Action #4 to be to perform an artillery strike to S1 generating a new BV = [0.0577, 0.0769, 
0.8654]. 

Table B-4.  Conditional probability calculations for fourth action:  Strike2 to S1. 

Previous 
Belief Vector CP Exceed Δ 

Threshold ? 
Exceed σ 

Threshold ? Choice Observation 

 
[0.2308, 
0.0769, 
0.6923] 

⎡   S1     ,      S2      ⎤ 
⎣S1+ S2   S1+ S2⎦ 

 
⎡        0.2308          ,     

0.0769     ⎤ 
⎣0.2308+0.0769   
0.2368+ 0.0769⎦ 

 
= [0.75008 , 0.2499] 

 
∴For Action where 
Dead  Belief ≠ 0.0, 
the denominator 
will not sum to 1.0, 
but the total contrast 
must still sum to 
1.0., or 
0.750081 + .249919 
= 1.0 

 
NO 

 
Because 
DEAD state 
with a Belief 
Vector value 
= 0.6923 is 
less than Δ 
which is 
equal to 0.9. 

 
YES 

 
Because cell 
S1 has a 
Contrast 
Ratio value = 
0.750081 
which is > σ 
at 0.75. 

Because  S1 and 
only S1 meets 
SHOOT criteria, 
Select, Shoot S1 
because  S2 @ 
0.0769 is <  σ at 
0.75.  For future 
cases where there 
might be multiple 
location states 
exceeding σ, set 
up the general 
selection of 
RAND Shoot 
(S1).  Thus select  
SHOOT  at S1, 
i.e., perform 
STRIKE2 at S1. 

 
NO INFO 

 
(From this action 
of STRIKE2 to 
S1.) 
 
Generating a 
Belief Vector = 
[0.0577, 0.0769, 
0.8654] 
 
 
 
 
 

 
 
Action 5:  Make Choice to Perform Recon3 to S2. 

Using the BV from Action #4 of  [0.0577, 0.0769, 0.8654].,  the CP is now evaluated to determine 
Action #5 to be to perform a reconnaissance mission to S2 generating a new BV = [0.0609, 0.0254, 
0.9137].  As the new BV component for State3 at 0.9137 now exceeds the Δ threshold of 0.90, the 
model makes the decision to terminate with a declaration of ‘Mission Complete’ with the belief 
that the enemy has been destroyed. 
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Table B-5.  Conditional probability calculations for fifth action:  Recon3 to S2 

Previous 
Belief Vector CP Exceed Δ 

Threshold ? 
Exceed σ 

Threshold ? Choice Observation 

 
[0.0577, 
0.0769, 
0.8654]  

⎡   S1     ,      S2      ⎤ 
⎣S1+ S2   S1+ S2⎦ 

 
⎡        0.0577          ,     

0.0769     ⎤ 
⎣0.0577+0.0769   
0.0577+ 0.0769⎦ 

 
= [0.4287 , 0.5713] 

 
∴For Action where 
Dead Belief  ≠ 0.0, 
the denominator 
will not sum to 1.0, 
but the total contrast 
must still sum to 
1.0., or 
0.4287 + .5713 = 
1.0 

 
NO 

 
Because 
DEAD state 
with a Belief 
Vector value 
= 0.8654 is 
less than Δ 
which is 
equal to 0.9. 

 
NO 

 
Because 
neither cell 
has a CR 
value > 0.75 
with S1= 
0.4287 and 
with S2= 
0.5713  

 
Because neither S1 
or S2 meets σ 
criteria, select, 
RAN (i) of set of 
cells w/ largest 
contrast value, in 
this case only S2 
@ 0.5713 is in the 
set of cells 
containing the 
largest contrast 
value,  
thus select a recon 
into S2, i.e.,  
perform RECON3 
into S2. 

 
ENEMY NOT 

SIGHTED 
 
From this action of 
RECON3 to S2 
when enemy @ S1. 
 
Generating a Belief 
Vector = 
 
[0.0609, 0.0254, 
0.9137] 
 
 

Note:  Δ threshold now exceeded with DEAD state Belief Vector value = 0.9137 which is greater than Δ at 0.9, 
therefore next action will be to DECLARE. 
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